Crystal structure of TRIM20 C-terminal coiled-coil/B30.2 fragment: implications for the recognition of higher order oligomers
نویسندگان
چکیده
Many tripartite motif-containing (TRIM) proteins, comprising RING-finger, B-Box, and coiled-coil domains, carry additional B30.2 domains on the C-terminus of the TRIM motif and are considered to be pattern recognition receptors involved in the detection of higher order oligomers (e.g. viral capsid proteins). To investigate the spatial architecture of domains in TRIM proteins we determined the crystal structure of the TRIM20Δ413 fragment at 2.4 Å resolution. This structure comprises the central helical scaffold (CHS) and C-terminal B30.2 domains and reveals an anti-parallel arrangement of CHS domains placing the B-box domains 170 Å apart from each other. Small-angle X-ray scattering confirmed that the linker between CHS and B30.2 domains is flexible in solution. The crystal structure suggests an interaction between the B30.2 domain and an extended stretch in the CHS domain, which involves residues that are mutated in the inherited disease Familial Mediterranean Fever. Dimerization of B30.2 domains by means of the CHS domain is crucial for TRIM20 to bind pro-IL-1β in vitro. To exemplify how TRIM proteins could be involved in binding higher order oligomers we discuss three possible models for the TRIM5α/HIV-1 capsid interaction assuming different conformations of B30.2 domains.
منابع مشابه
Self-association of TPR domains: Lessons learned from a designed, consensus-based TPR oligomer.
The tetratricopeptide repeat (TPR) motif is a protein-protein interaction module that acts as an organizing centre for complexes regulating a multitude of biological processes. Despite accumulating evidence for the formation of TPR oligomers as an additional level of regulation there is a lack of structural and solution data explaining TPR self-association. In the present work we characterize t...
متن کاملThe TRIM5alpha B-box 2 domain promotes cooperative binding to the retroviral capsid by mediating higher-order self-association.
The retroviral restriction factor, TRIM5alpha, blocks infection of a spectrum of retroviruses soon after virus entry into the cell. TRIM5alpha consists of RING, B-box 2, coiled-coil, and B30.2(SPRY) domains. The B-box 2 domain is essential for retrovirus restriction by TRIM5alpha, but its specific function is unknown. We show here that the B-box 2 domain mediates higher-order self-association o...
متن کاملStructure of the yeast Bre1 RING domain
Monoubiquitination of histone H2B at Lys123 in yeast plays a critical role in regulating transcription, mRNA export, DNA replication, and the DNA damage response. The RING E3 ligase, Bre1, catalyzes monoubiquitination of H2B in concert with the E2 ubiquitin-conjugating enzyme, Rad6. The crystal structure of a C-terminal fragment of Bre1 shows that the catalytic RING domain is preceded by an N-t...
متن کاملStructure of the ArgRS-GlnRS-AIMP1 complex and its implications for mammalian translation.
In higher eukaryotes, one of the two arginyl-tRNA synthetases (ArgRSs) has evolved to have an extended N-terminal domain that plays a crucial role in protein synthesis and cell growth and in integration into the multisynthetase complex (MSC). Here, we report a crystal structure of the MSC subcomplex comprising ArgRS, glutaminyl-tRNA synthetase (GlnRS), and the auxiliary factor aminoacyl tRNA sy...
متن کاملCoiled-coil deformations in crystal structures: the measles virus phosphoprotein multimerization domain as an illustrative example.
The structures of two constructs of the measles virus (MeV) phosphoprotein (P) multimerization domain (PMD) are reported and are compared with a third structure published recently by another group [Communie et al. (2013), J. Virol. 87, 7166-7169]. Although the three structures all have a tetrameric and parallel coiled-coil arrangement, structural comparison unveiled considerable differences in ...
متن کامل